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Enhanced diffusion coefficients arising from the theory of periodic homogenized
averaging for a passive scalar diffusing in the presence of a large-scale, fluctuating
mean wind superimposed upon a small-scale, steady flow with non-trivial topology are
studied. The purpose of the study is to assess how the extreme sensitivity of enhanced
diffusion coefficients to small variations in large-scale flow parameters previously
exhibited for steady flows in two spatial dimensions is modified by either the presence
of temporal fluctuation, or the consideration of fully three-dimensional steady flow.
We observe the various mixing parameters (Péclet, Strouhal and periodic Péclet
numbers) and related non-dimensionalizations. We document non-monotonic Péclet
number dependence in the enhanced diffusivities, and address how this behaviour is
camouflaged with certain non-dimensional groups. For asymptotically large Strouhal
number at fixed, bounded Péclet number, we establish that rapid wind fluctuations
do not modify the steady theory, whereas for asymptotically small Strouhal number
the enhanced diffusion coefficients are shown to be represented as an average over
the steady geometry. The more difficult case of large Péclet number is considered
numerically through the use of a conjugate gradient algorithm. We consider Péclet-
number-dependent Strouhal numbers, S = QPe−(1+γ), and present numerical evidence
documenting critical values of γ which distinguish the enhanced diffusivities as arising
simply from steady theory (γ < −1) for which fluctuation provides no averaging, fully
unsteady theory (γ ∈ (−1, 0)) with closure coefficients plagued by non-monotonic
Péclet number dependence, and averaged steady theory (γ > 0). The transitional case
with γ = 0 is examined in detail. Steady averaging is observed to agree well with
the full simulations in this case for Q 6 1, but fails for larger Q. For non-sheared
flow, with Q 6 1, weak temporal fluctuation in a large-scale wind is shown to reduce
the sensitivity arising from the steady flow geometry; however, the degree of this
reduction is itself strongly dependent upon the details of the imposed fluctuation.
For more intense temporal fluctuation, strongly aligned orthogonal to the steady
wind, time variation averages the sensitive scaling existing in the steady geometry,
and the present study observes a Pe1 scaling behaviour in the enhanced diffusion
coefficients at moderately large Péclet number. Finally, we conclude with the numerical
documentation of sensitive scaling behaviour (similar to the two-dimensional steady
case) in fully three dimensional ABC flow.
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1. Introduction
Perhaps the most important outstanding problem of modern theories for fluid

dynamics is understanding the origin of small-scale fluid turbulence arising in large-
scale fluid experiments, and the assessment of those small-scale fluctuations upon
large-scale observables. Indeed, one need look no further than the example of a
turbulent jet to appreciate this fact. Landau, in 1944 (Landau 1944; Batchelor 1967;
Landau & Lifschitz 1987), presented a beautiful exact solution of the Navier–Stokes
equations, the Landau jet, which possesses the interesting property that for large jet
momentum, the jet angle is seen to vanish, scaling as (ν2ρ/M)1/2, where ν, ρ are the
respective fluid viscosity and density, and M measures the jet momentum. However,
turbulent jets are readily observed to have a non-zero angle of roughly 25◦ at large
Reynolds number (Landau & Lifschitz 1987). These seemingly different predictions
are reconciled through observing that the laminar jet is unstable (to vortex instabilities,
etc.). Be it for the lack of a complete theory for small-scale fluid turbulence, or be it
for the inability to resolve the energy-containing scales of complicated fluid motion,
turbulence modellers have elected to utilize turbulent mixing coefficients to attempt to
parameterize turbulence, and its effects upon large-scale observables. In the context of
jets, if the viscosity is replaced by a ‘turbulent’ viscosity, νT ≈ λT (M/ρ)1/2, a non-zero
jet angle is readily achieved. This is essentially a Prandtl mixing length argument,
and demonstrates explicitly how turbulence closure modelling may yield a prediction
for how small-scale turbulence may affect large-scale observables. Unfortunately, the
mathematics supporting this natural procedure does not yet exist, at least in the
context of the deterministic Navier–Stokes equations.

A natural problem for assessing the validity of such closure modelling is that of a
diffusing passive scalar, with prescribed small-scale turbulence incorporated through
a variable coefficient advection. While directly only an analogy to turbulent jets, the
point in this context is to develop rigorous averaging theories for replacing the effect
of such rapidly varying coefficients by effective diffusion coefficients. The utility of
working with a passive scalar is that the dynamics are linear, though many essential
difficulties (such as problems of closure) are explicitly retained. This problem is akin
to providing rigorous justificiation of Prandtl mixing length arguments in the simpler
context of a linear evolution involving variable coefficients. Such theory has been com-
pletely developed using the method of homogenized averaging, and rigorously predicts
that indeed (in many circumstances, see discussion below) the effect of these small
scales may be incorporated as an effective, though sometimes anamolous, diffusion
coefficient, thereby justifying mixing length arguments (Bensoussan, Lions & Papan-
icolaou 1978; Moffatt 1983; McLaughlin, Papanicolaou & Pironneau 1985; Pomeau
1985; McCarty & Horsthemke 1988; Solomon & Gollub 1988; Koch & Brady 1989;
Koch et al. 1989; Young, Pumir & Pomeau 1989; Crisanti et al. 1990; Majda 1990;
Avellaneda & Majda 1991; Knobloch & Merryfield 1992; Brenner & Edwards 1993;
Majda & McLaughlin 1993; Fannjiang & Papanicolaou 1994; McLaughlin 1998).

But there is an essential difficulty. What is the coupling constant, λT? How does
the coupling constant depend upon the large-scale geometry? How does it depend
upon the details of the small-scale turbulence? These questions are fundamental to
developing a complete theory for fluid turbulence, for it is this coupling constant
which essentially sets the large-scale observable, the jet angle.

Work of Koch et al. (1989), Majda & McLaughlin (1993), and McLaughlin (1998)
has demonstrated that these difficulties may be inherent and unavoidable, at least
in idealized passive scalar studies. This work established sensitive dependence in
the effective diffusion coefficients upon fluid flow parameters for two-dimensional
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steady periodic flow with a mean wind (first formally by Koch et al. 1989 and
rigorously proven by Majda & McLaughlin 1993). Specifically, the enhanced diffusion
coefficients as predicted by homogenized averaging were shown rigorously to possess
a discontinuity on a dense set of mean flow directions in the limit of infinite Péclet
number, Pe, whereby the magnitude of the enhanced diffusion coefficient is seen
to take O(1) values for mean wind angles with irrational tangents, and O(Pe2) for
angles with rational tangents (Majda & McLaughlin 1993) (see also related work of
Fannjiang & Papanicolaou 1994). This surprisingly sensitive behaviour was further
established numerically within the context of the infinite time homogenization theory
to be present at finite Péclet number. This was established through the observance
of sensitivity in the complicated crossover behaviour connecting the generically Pe2

scaling at small Péclet number with the limiting behaviour at infinite Péclet number. It
was documented that a small change, ∆V , in the large-scale steady mean wind leads to
a dramatic change in large Pe scaling. Specifically, it was shown that a small change in
a flow parameter caused the high Pe scaling of the enhanced diffusions to switch from
O(Pe2) scaling to O(1) scaling over a wide range of Péclet numbers (Koch et al. 1989;
Majda & McLaughlin 1993). Moreover, using carefully benchmarked Monte-Carlo
simulation, McLaughlin demonstrated that the sensitivity (to mean wind direction)
in this crossover behaviour is observable at finite time (McLaughlin 1998), thereby
showing that this sensitive scaling is not an artifact of the homogenization method.
It should be observed that Avellaneda & Majda (1991) have proved that these two
distinct scaling behaviours are the respective maximal and minimal Péclet scalings
possible in this context. A very small change in a large-scale flow parameter produces
dramatically different mixing properties of the passive scalar. As such, the natural
interpretation of these sorts of results is that while the ideas of turbulent closure are
well founded and rigorously justifiable, the empirical task of determining the precise
closure coefficients may suffer from intrinsic difficulties.

The natural question to ask is how the addition of time variation into the fluid
motion, or the consideration of three-dimensional, as opposed to two-dimensional
flow may somehow alter these sensitive predictions in the steady, or two-dimensional
geometry. Some necessary ergodic conditions have been developed to guarantee when
a time-dependent flow will induce maximal Péclet number scaling, Pe2 (Mezic, Brady
& Wiggins 1996), but much less is known generally (specifically, for ergodic flows),
especially regarding the determination of the asymptotic scaling properties for ergodic
flows. Certainly, the hope is that strong temporal fluctuation will in some way smooth
the poor, and sensitive scaling behaviour arising in the steady geometry. Of course,
the addition of temporal fluctuation adds considerable complexity, and in the light
of the complex behaviour already present in the steady geometry, a complete theoreti-
cal description of how time variation modifies the effective mixing seems extremely
difficult. Consequently, it is the purpose of this paper to carefully explore these issues
through the careful asymptotic and numerical calculation of enhanced eddy diffusion
coefficients arising from mathematical theories of homogenized averaging.

Here, we study the enhanced diffusion coefficients which arise out of the theory
of homogenized averaging for two-dimensional periodic flows involving unsteady
mean winds, and three-dimensional steady (ABC) flows through use of a carefully
benchmarked conjugate gradient algorithm along with asymptotic consideration of
a variety of limiting cases. We present a brief review of previous studies of these
homogenized effective diffusion coefficients and their sensitive flow parameter depen-
dence. We additionally discuss the various non-dimensionalizations and parameters
(Péclet, periodic Péclet, Strouhal numbers) possible for spatio-temporal advections,
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and address subtle differences in parametric dependences. At fixed, bounded Péclet
numbers, the limiting cases of asymptotically small and large Strouhal numbers (or
equivalently large and small periodic Péclet numbers, respectively) are shown to be
reduced to steady theory. We show that the former case is given by a temporal average
over the enhanced diffusion coefficients arising in the steady geometry with frozen
temporal coefficient, while the latter case agrees precisely with the steady geometry,
with the temporal velocity fluctuation replaced by its time average.

The more difficult case involving high Péclet numbers is explored utilizing a con-
jugate gradient algorithm to integrate the associated time-varying cell problem. This
algorithm is carefully benchmarked using the time-varying shear layer (Majda &
Kramer 1999). We document that the phenomenon varies greatly with Strouhal num-
ber, and consider the Péclet-number-dependent Strouhal numbers, S = QPe−(1+γ), for
constant Q. For cases with γ > 0, we compare the full numerical solution of the tem-
porally varying cell problem with that of a straight average over the steady geometry.
This comparison shows that steady averaging over frozen temporal coefficients pro-
vides an excellent approximation to the fully time-dependent cell problem, as might
be expected through formal arguments at fixed Péclet number. In this regime, tempo-
ral fluctuation in fact provides enough averaging to smooth the sensitive parameter
dependence which occurs for steady flows. Here, we numerically observe a Pe1 scaling
law for strong enough fluctuations over a range of Péclet numbers. However, for cases
with γ ∈ (−1, 0), steady averaging fails, and full simulation of the temporally varying
cell problem is required for accurate coefficient tabulation. In these cases, the enhanced
diffusion coefficients are observed to exhibit complicated non-monotonic Péclet num-
ber dependence. This behaviour is discussed with regard to known Stieltjes measure
formulas existing for temporally fluctuating flows (Avellaneda & Vergassola 1995).
For γ 6 −1, the temporal fluctuation is irrelevant as the coefficients are observed to be
governed in this regime by the steady theory. For cases with γ < 0, there is little hope
for temporal fluctuation to massage the troubling predictions of the steady geometry.

Lastly, we show that sensitive scaling behaviour is not an artifact of two-dimensional
steady flow by explicitly documenting that, in steady ABC flow, the enhanced diffu-
sion coefficients may experience sensitive Péclet number scaling behaviour similar to
that occurring in the two-dimensional case.

2. Scaling and non-dimensional mixing parameters
To begin, we consider the passive scalar equation in dimensional form, and discuss

the different non-dimensional parameters which may be identified to assist in iden-
tifying transport properties. Let T be the concentration of a scalar diffusing in the
presence of a prescribed velocity field. T satisfies the following evolution equation:

∂T

∂t
+ u · ∇T = κ∆T . (2.1)

Here, κ is the tracer’s molecular diffusivity, and the incompressible velocity field
u is spatially periodic with period L (assumed for brevity in exposition to be the
same in all directions), and temporally periodic with time period TP . Let V̄ denote
a characteristic velocity field. From the dimensional parameters, V̄ , κ, L, TP , we may
form three non-dimensional parameters, the Strouhal number, S = L/(TP V̄ ), the
Péclet number, Pe = V̄L/κ, and the periodic Péclet number, τP = κTP/L

2. The Péclet
number measures the relative strength of fluid advection to molecular diffusion, while
the Strouhal and periodic Péclet numbers are ratios of time scales, Strouhal being
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the ratio of the characteristic velocity sweeping time to period time, and the periodic
Péclet measuring the ratio of the time period to the diffusion time. These parameters
are not independent, but in fact are algebraically related through

τP =
1

S Pe
. (2.2)

Consequently, there are different non-dimensionalizations possible with these parame-
ters. In this paper, we are particularly interested in studying how temporal fluctuation
affects Péclet number scalings on long, diffusive time scales, and as such we will pri-
marily consider the parameterizations: (Pe, τP ). To this end, let y = x/L, τ = tκ/L2,
and v = u/V̄ . In these new non-dimensional variables, the passive scalar evolves
according to

∂T

∂τ
+ Pe v(y, τ) · ∇T = ∆T . (2.3)

The flow field in this non-dimensionalization has unit spatial period, and temporal
period τP .

Observe that an alternative non-dimensionalization is possible in which y = x/L,
τ = t/TP , and v = u/V̄ . In this non-dimensionalization, the passive scalar evolves as

Pe

(
S
∂T

∂τ
+ v · ∇T

)
= ∆T

where v has unit periods in both space and time. Avellaneda & Vergassola (1995)
generalized earlier work for steady flow (Avellaneda & Majda 1991) to temporally
varying flows to show that the enhanced diffusivities arising in homogenized averag-
ing (see § 3.1 below) in fact may be represented through a Stieltjes measure formula
in this particular non-dimensionalization. One ramification of this observation is that
the ensuing effective mixing coefficients should be expected to demonstrate monotonic
dependence in the Péclet number at fixed Strouhal number. We point out that in
the previous non-dimensionalization, such a representation is not guaranteed. In fact,
we document below non-monotone Péclet number behaviour in a time-varying shear
layer at fixed (small) periodic Péclet numbers, τP . We demonstrate below that this
non-monotone behaviour is consistent with the Stieltjes measure formula through the
nonlinear algebraic identity (2.2), and emphasize that these differences reflect the dif-
ferent time scales studied in these two distinct non-dimensionalizations. More complete
discussion of these subtleties regarding the mixing properties for passive transport
with temporally varying flows will be given at the end of the following section.

We further comment that with the algebraic parameter relation given in (2.2),
studying the mixing properties for flows with large Péclet number and fixed periodic
Péclet number yields the indirect consideration of the vanishing Strouhal number
singular limit: S = 1/(Pe τP ) → 0. It is in this limit that several authors have
identified the possibility of interesting non-universal behaviour (Castiglione 2000;
Ottaviani 1992). Below, we explore in great detail this limit, as well as others.

3. Previous theory and results
3.1. Homogenization for temporally varying flows

Employing standard methods of homogenized averaging (Bensoussan et al. 1978;
McLaughlin et al. 1985; Majda & Kramer 1999), we consider the space–time averaging
of the passive scalar equation given in (2.3) with a periodic velocity field with unit



350 J. Bonn and R. M. McLaughlin

spatial periods, and temporal period τP . A separation of scales is introduced through
the assumption of a slowly varying initial temperature field, T |t=0 = T0(δy). Define
the spatio-temporal average to be

〈·〉 ≡ 1

τP

∫
[0,τP ]

∫
[0,1]d
· dx dt (3.1)

with d the spatial dimension of the velocity. We separate the periodic velocity field
into its mean, V , and mean free, v, 〈v〉 = 0 components. Then, making the usual
long-time, parabolic rescaling of space–time, the problem to average is

∂T (δ)

∂t
+ δ−1Pe

(
v

(
x

δ
,
t

δ2

)
+ V

)
· ∇T (δ) = ∆T (δ), (3.2)

T (δ)(x, 0) = T0(x).

The limit of vanishing δ has been well studied by homogenization theory. We
summarize the results of this averaging procedure and direct the reader to the
literature for details regarding this calculation (Bensoussan et al. 1978; McLaughlin
et al. 1985; Majda 1990; McLaughlin 1994; Majda & Kramer 1999). In a frame of
reference moving with the mean wind, V , the renormalized passive scalar equation in
the limit of vanishing δ is seen to satisfy the effective diffusion equation:

∂T̄ (x, t)

∂t
= ∇ · (K̄∇T̄ (x, t)) (3.3)

T̄ (x, 0) = T0(x),

where K̄ = (I + κ). The tensor κ is defined as

κi,j = 〈∇Θi · ∇Θj〉 (3.4)

for i, j = 1, . . . , d, where 〈·〉 is the spatial and time average that we defined in (3.1).
This tensor represents the addition to the diffusion tensor of the original advection–
diffusion equation resulting from the effect of the background velocity, and is denoted
the enhanced diffusion tensor. The new term, Θj , is the unique, mean zero solution
of the periodic boundary value (cell) problem

∂Θj(x, t)

∂t
− ∆Θj(x, t) + Pe(v(x, t) + V ) · ∇Θj(x, t) = −Pe vj(x, t). (3.5)

Here, vj denotes the jth component of the mean free portion of the velocity field. It
should be noted that the boundary conditions for this problem are periodic in both
space and time (with unit period in space, and temporal period τP in this particular
non-dimensionalization), and as such the problem does not have an initial condition.
Instead, the solution Θj(x, t) has the same periodicity as the driver, vj(x, t). The
uniqueness of the solution in this framework has been established in the literature
(Bensoussan et al. 1978; Majda 1990; Majda & Kramer 1999). Attempts have been
made to study the temporally varying cell problem for cases where the velocity field
admits fluctuations (Castiglione et al. 1998; Castiglione 2000), using time stepping.
The algorithm we develop below does not utilize time stepping, but instead forces the
proper boundary condition through a full spatio-temporal spectral decomposition.

Previous mathematical studies have shown that enhanced diffusion coefficients
given by the inner product in (3.4) may be represented (for the second non-
dimensionalization with group (Pe, S)) in terms of a Stieltjes measure formula quite
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generally (Avellaneda & Majda 1991; Avellaneda & Vergassola 1995):

K̄ = 1 + Pe2

∫
σ(dλ, S)

1 + Pe2 λ2
. (3.6)

Here, σ represents some (unknown) measure which depends upon the Strouhal num-
ber. Stieltjes measure formulae are useful in many regards, specifically in deducing
rigorous bounds for the enhanced diffusivities as a function of Péclet number (Avel-
laneda & Majda 1991; Majda & McLaughlin 1993; Fannjiang & Papanicolaou 1994).
Further, these formulae additionally imply monontonic dependence in the Péclet num-
ber, at fixed Strouhal number. It should be stressed that this conclusion is somewhat
misleading: for Péclet-number-dependent Strouhal numbers, S = S(Pe), the measure
itself implicitly admits Péclet number dependence, and all monotonicity may be lost.
Indeed, we demonstrate explicitly below in § 6 conditions under which monotone
Péclet number dependence is lost.

3.2. Previous results with a Childress–Soward flow

In previous work, Majda & McLaughlin (1993), and McLaughlin (1998), using a
variety of rigorous elliptic theory, computational study of the elliptic cell problem,
and Monte-Carlo simulations for the Brownian trajectories underlying the dynamic
passive scalar equation, carefully documented that the Péclet number scaling would be
sensitively dependent upon flow parameters for steady fluid flows possessing a mean
wind. Specifically, they considered the fluid flow given by the following Childress and
Soward streamfunction:

ψsteady = sin (2πx) sin (2πy) + ε cos (2πx) cos (2πy) (3.7)

where 0 6 ε 6 1. They established that the enhanced diffusivity tensor would show
dramatically different scaling behaviour for small changes in the angle of the large-
scale mean wind, V = (Vx, Vy)

t. Rigorous theory documents that in the limit of infinite
Péclet number, the enhanced diffusivities possess a discontinuity on a dense set of
mean wind angles whereby the enhanced diffusion switches from the asymptotic
Pe2 scaling for winds whose angles possess rational tangents, to O(1) scaling for
irrational tangents (Majda & McLaughlin 1993; Fannjiang & Papanicolaou 1994).
At finite Péclet number, similar behaviour was documented through computational
study of the elliptic cell problem. Numerically, the enhanced diffusion coefficients
were seen to exhibit a dramatic change in scaling for small perturbations in the
mean wind (Koch et al. 1989; Majda & McLaughlin 1993). McLaughlin (1998)
demonstrated using carefully benchmarked Monte-Carlo simulation of the underlying
stochastic trajectories that this sensitive scaling is not an artifact of the homogenized
averaging of the passive scalar equation, but in fact is intrinsic to the system. Figure 1
illustrates the typical behaviour (the same as studied by McLaughlin 1998, similar
to studies performed in Majda & McLaughlin 1993). Shown is a log-log plot of
the enhanced diffusion coefficient κ1,1 as a function of Péclet number, obtained as a
numerical solution of the elliptic cell problem, for the Childress–Soward flow above
with representative parameter, ε = 0.5, for two slightly different mean winds. The top
curve corresponds a mean wind V = (−15, 15), while the bottom curve corresponds
to V = (−15.5, 15). Observe that the small change in the mean wind is essentially not
noticeable at small Péclet numbers as the curves are indistinguishable, but at a Péclet
number Pe ≈ 10, the two curves dramatically ‘split’. It should be emphasized that this
splitting covers the full range of rigorously allowable Péclet number scalings, with
the upper case following Pe2, and the bottom case following Pe0. To summarize, a
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Figure 1. Re-creation of the splitting first seen in McLaughlin (1998) for the steady flow derived
from the Childress–Soward streamfunction. For both curves, ε = 0.5. Notice that the small change in
mean wind can create a dramatic difference in the Péclet number scaling of the enhanced diffusion.

small perturbation, ∆V = (0.5, 0), in the large-scale steady wind produces a dramatic
change in Péclet scaling at moderately large Péclet numbers.

Two issues are apparent. First, how does the addition of time variation into the mean
wind modify this splitting which is indicative of extremely sensitive Péclet number
scaling. And second, can this complicated splitting occur in a fully three-dimensional
flow.

4. Numerical technique
Here, we outline the conjugate gradient algorithm used to numerically solve the

time-varying cell problem given in (3.5). We will consider two different types of
velocity fields. First, we explore temporal generalizations of the two-dimensional
steady Childress–Soward flows considered by Majda and McLaughlin (Majda &
McLaughlin 1993; McLaughlin 1998). Secondly, we consider fully three-dimensional
steady ABC flow. Below, we explain in full detail the methodology employed for the
unsteady two-dimensional flow, and observe that the methodology is quite similar for
the case of the three-dimensional ABC flow. Additional details may be obtained from
Bonn (2001).

4.1. Numerical discretization

Here, we document the numerical algorithm utililized to solve the cell problem given
in (3.5). We consider solutions of the cell problem for velocity fields obtained by
adding a time-dependent perturbation to the flow given by the steady, mean free
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Childress–Soward streamfunction. Specifically, we consider velocities of the form
v(x, t) = v(x) + A(t) where

v(x) = ∇⊥(sin (2πx) sin (2πy) + ε cos (2πx) cos (2πy)),

A(t) =


δx sin

(
2π

τP
t

)
δy sin

(
2Nπ

τP
t+ φ

)
 ,


(4.1)

where φ is a constant phase, N is an integer which allows for different (commen-
surate) rates of fluctuation between the horizontal and vertical wind fields, and the
perpendicular gradient operator is defined as ∇⊥ = (∂/∂y,−∂/∂x)t. The constant
mean velocity is given by V = (Vx, Vy)

t, so that the full velocity field studied below
is V + v(x, t). Notice that the spatial period of the velocity is 1 and time period is
τP . Also notice that the mean of the velocity field, v(x, t), is zero. We are primarily
interested in exploring how the presence of temporal fluctuation, here taken to be a
low-mode simple sinusoidal fluctuation, affects the complicated Péclet number split-
ting behaviour occurring as the steady mean wind is perturbed. In this study, the
parameters adjusting the flow’s unsteadiness are the intensities, (δx, δy), and the time
period, τP (or Strouhal number, S).

We next document the numerical discretization employed and the conjugate gra-
dient iteration scheme utilized to invert the system. The reader not interested in the
details of the numerical algorithm may skip ahead to § 5.

To arrive at the unique mean zero solution, we follow the example of Majda &
McLaughlin (1993) and use a Fourier spectral method. Specifically, we let

Θj =
∑
l,m,n6=0

A
j
n,m,l exp

(
2πi

(
nx+ my +

l

τP
t

))
,

vj =
∑
l,m,n6=0

v̂
j
n,m,l exp

(
2πi

(
nx+ my +

l

τP
t

))
.

Substituting these and taking the convolution, we obtain the following infinite system
of linear equations for the spectral coefficients Ajn,m,l (Bonn 2001):

ζn,mA
j
n,m,l−N + ρn,mA

j
n,m,l−1 + βn,mA

j
n−1,m−1,l

+ γn,mA
j
n+1,m−1,l + α′n,m,lA

j
n,m,l − γn,mAjn−1,m+1,l

− βn,mAjn+1,m+1,l − ρn,mAjn,m,l+1 − ζ∗n,mAjn,m,l+N = −Pe v̂jn,m,l (4.2)

where the superscript asterisk means the complex conjugate. The coefficients are
defined as follows:

α′n,m,l = αn,m + 2πi

[
l

τP
+ Pe(Vxn+ Vym)

]
, αn,m = 4π2(n2 + m2),

βn,m = π2 Pe (1− ε)(n− m), γn,m = −π2 Pe (1 + ε)(n+ m),

ρn,m = πPe δxn, ζn,m = πPe δym(cos (φ) + i sin (φ)),

 (4.3)

where we have used the known spectral coefficients of the velocity field. Note that



354 J. Bonn and R. M. McLaughlin

reality of the solution requires that (Ajn,m,l)
∗ = A

j
−n,−m,−l . This relation follows from

conjugating (4.2) and noticing that the same result follows from replacing the index
triplet (n, m, l) with (−n,−m,−l).

To solve this infinite-dimensional system, we must truncate it to a system of finite
size, limiting the Fourier modes to n, m, l = −M, . . . ,M. Now we have a linear system
of (2M+1)3 equations and unknowns. However, the known Fourier representation of
the velocity field (the driver) allows us to decouple the system into two parts, where
n + m is odd and where n + m is even. The part with n + m odd is a homogenous
system of equations, and thus the solution of this part is Ajn,m,l = 0 for j = 1, . . . , d and

n, m, l = −M, . . . ,M. Further notice that the Fourier mode Aj0,0,0 has been excluded
from the equations by our definition of the spectral expansion of Θj . To treat this

correctly, to obtain a mean zero solution, we set Aj0,0,0 = 0. Lastly, observe that the
part of the system where n = m = 0 is diagonal. This portion of the system is inverted
first and subsequently utilized to complete the inversion.

Once the solution is obtained, the enhanced diffusion coefficient κ1,1, is calculated
with the aid of the the identity 〈∇Θi ·∇Θj〉 = −Pe〈viΘj+vjΘi〉/2. Using the calculated

solution A
j
n,m,l and the spectral form of v, the enhanced diffusion coefficient can be

written as

κ1,1 = Pe (π[(1− ε) Im (A1
1,1,0) + (1 + ε) Im (A1

1,−1,0)] + δx Im (A1
0,0,1)).

To verify convergence of this approach to solutions of the limiting infinite-
dimensional system, M is increased to ensure that enough spectral modes are retained
to accurately describe the solution to the cell problem. The criterion employed to
determine convergence is based upon the relative difference between the enhanced
diffusions calculated at successive values of M. We declare a simulation to be con-
verged at a particular Péclet number if this relative difference is less than a given
tolerance. In the simulations discussed below, this tolerance was selected to be 10−3.

As mentioned above, when discretizing the cell problem arising from the ABC flow,
the process is similar. The system does not decouple as nicely; however, the basic
ideas are the same (Bonn 2001).

4.2. Conjugate gradient iteration scheme

Here we discuss the iterative method utilized to obtain solutions of the finite-
dimensional problem given above in (4.2).

The system of equations has been reduced to the linear system BAj = −Pe v̂j . The
matrix B has a special stucture, it can be written as B = D+C where D is a diagonal
matrix with real, positive elements which are independent of the Péclet number,
and C is skew Hermitian, CH = −C , where CH means the conjugate transpose.
With the structure of D , there exists an invertible matrix D1/2 where D = D1/2D1/2.
Thus D−1/2BD−1/2 = I + F where F = D−1/2CD−1/2. Notice that F is also a skew
Hermitian matrix since D , and thus D−1/2, are diagonal matrices. Therefore, the
system BAj = −Pe v̂j is equivalent to the system (I +F )x = b where Aj = D−1/2x and
b = −PeD−1/2v̂j .

The eigenvalues of this system, µ, all have real part, Re (µ) = 1. This is a result
of the fact that the eigenvalues of the skew Hermitian matrix F are purely complex.
Therefore, the eigenvalues of I + F are just those of F shifted to the right by 1. Thus,
the linear system is obviously invertible.

To solve the system (I + F )x = b where F is skew Hermitian, we use a conjugate
gradient scheme developed by Concus & Golub (1976). The idea is to use an iterative
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Size of system, Number of iterations
Péclet number M (2M + 1)3 for convergence

10−3 5 1331 2
100 5 1331 28
101 5 1331 235
101.5 6 2197 781
102 27 166 375 2653
102.4 52 1157 625 5777

Table 1. Number of iterations needed for the conjugate gradient method with no preconditioning
to converge for the case δx = δy = 0.65 and N = 1 where the mean wind is (Vx, Vy)

t = (−15, 15)t.

scheme of the type

xk+1 = xk−1 + ωk+1(νkr
k + xk − xk−1)

where rk is the residual after the kth step, rk = b − (I + F )xk . The coefficients ωk+1

and νk are chosen so that the residuals at all steps are conjugate to each other, i.e.
(rj)H rk = 0 when j 6= k. We find that the condition for conjugacy of residuals is

νk =
(rk)H rk

(rk)H rk + (rk)HF rk
and ωk+1 =

(rk−1)H rk−1

(rk−1)H rk−1 +

(
νk

ω∗kν∗k−1

)
(rk)H rk

.

Our iterative convergence criterion is based upon residuals. We say there is con-
vergence to a solution for a particular M when the ratio of the size of the residual to
the original right-hand side is less than some prescribed tolerance, or

‖rk‖2

‖b‖2

< tolerance.

The tolerance used to determine convergence of the iteration scheme, with M modes,
is 10−8 in all simulations discussed below. We also tried checking for convergence
when the computed enhanced diffusion coefficient, as opposed to the residual, met a
similar criterion. The results were not significantly different. In table 1, we document
the number of iterations needed to converge for a few values of M for the choice of
parameters δx = δy = 0.65, the mean wind (Vx, Vy)

t = (−15, 15)t, and N = 1. Observe
that even though higher Péclet numbers required utilizing additional Fourier modes
(larger M), the number of iterations needed to converge to the solution for each
particular M is typically much less than the size of the system, (2M+1)3. This scheme
was performed without preconditioning which, looking at the convergence results, is
acceptable.

5. Benchmarks
5.1. Reproducing steady behaviour

The first benchmark of our numerical technique is to reproduce the steady-state
behaviour found by McLaughlin (1998). This was done by setting δx = δy = 0 and
the results were shown in figure 1 which duplicates the original splitting observed
by McLaughlin using direct inversion of a banded matrix, here derived using the
conjugate gradient algorithm outlined above. A few remarks are in order regarding
comparative timings and memory usage for the direct banded algorithm and the
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conjugate gradient algorithm employed here. In the case of steady flow, the system
is two-dimensional. This means that the resulting matrix system is comparatively
small. As a result, the direct method of using a banded solver is faster than using the
conjugate gradient iteration scheme. This is reported by timing results of simulations
run with the parameters ε = 0, Vx = Vy = 0 and finding the enhanced diffusion
coefficients for the values of the Péclet number where log10(Pe) runs from −3 to
2.9 in steps of 0.1 (60 values). The simulations were performed on a Compaq
AlphaServer DEC21000 with a 525 Mhz processor. The wall clock time for the
banded direct solver and the conjugate gradient algorithm are, respectively, 37.11 s
and 329.07 s. The conjugate gradient algorithm takes approximately 9 times as long
as the direct banded solver. As we change the problem from having a steady-
state velocity to an unsteady velocity, since we have periodicity in time as well as
space, we have a three-dimensional problem. The conjugate gradient algorithm does
not require the formation of any matrices, only the ability to perform the matrix
multiplication on a vector. The direct banded solver requires at least forming the
part of the matrix between the outermost bands. In the three-dimensional problem,
this becomes infeasible in terms of memory usage. Many of our simulations required
an M, described above as the cutoff value of the Fourier modes used, of at least
50, and for three of the simulations, we verified convergence by using M = 100.
The conjugate gradient algorithm uses memory on the order of M3, while the direct
banded solver would use memory on the order of M5, since the band width of the
system is on the order of M2. While not fully optimized, our conjugate gradient code
used slightly more than one gigabyte of memory on the simulation where M = 100;
the direct banded solver would not be able to solve that problem with the memory
available.

An additional remark should be made regarding the possibility of utilizing par-
ticle simulations of the stochastic differential equations underlying (2.3) to calculate
effective diffusion coefficients. This approach, while limited by the slow convergence
of the Monte-Carlo average, has been shown nonetheless to lead to quite accurate
calculations of the enhanced diffusion coefficients (Crisanti et al. 1990; McLaughlin
1998). For the steady geometry explored here, McLaughlin (1998) has documented
the success of this approach in observing the splitting in the Péclet number scaling
shown in figure 1, thereby documenting the success of the homogenization theory
at finite time. Of course, this approach, in the two-dimensional steady geometry, is
computationally more expensive than the direct banded inversion. In the unsteady
geometry, it is interesting to compare timing of the conjugate gradient algorithm with
that of a particle simulation algorithm (not developed in this article). While the nature
of the convergence of these algorithms is very different, we can nonetheless make a
rough comparison. To obtain a single enhanced diffusion coefficient accurately using
a modified version of the code employed by McLaughlin at Pe = 56, Vx = −15.5,
Vy = 15, δy = 0.05, δx = 0.1, N = 1, φ = 0, τP = 1, requires approximately 40
minutes to one hour of wall clock time on the 525 Mhz Dec Alpha processor, while
the same data point is obtained using the conjugate gradient algorithm in only 2.44 s.
However, while timings for Monte-Carlo methods do not vary largely as δx and δy
are increased, the conjugate gradient method does exhibit this tendency. Moreover, it
should be noted that Monte-Carlo methods are less restricted by memory limitations
which do pose serious limitations even for the present conjugate gradient algorithm.
A simulation where δx = δy = 0.5 and Vx = −15, with the rest of the parameters
unchanged, took approximately 95 s with the conjugate gradient algorithm. Also,
as the Péclet number is increased, the time to resolve the enhanced diffusion coef-
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ficient with the conjugate gradient technique also increases, as usually more Fourier
modes are needed. This ultimately imposes a memory limitation upon exactly what
can be computed. All things considered, the homogenization theory, coupled with
a carefully benchmarked conjugate gradient method is certainly the most efficient
and accurate of these algorithms, at least as regards obtaining the renormalized
coefficients.

5.2. Integral representations for the time-dependent shear flow

The second benchmark we explore is the time-varying shear profile, introduced by
Majda & Kramer (1999). This solution arises in the special case having the flow
parameter ε = 1, for which an analytical solution is available which represents the
enhanced diffusion coefficients in terms of an explicit integral (Majda & Kramer
1999). Also, P. R. Kramer (private research notes) derived an alternative integral
formulation which is somewhat better conditioned for numerical quadrature. For
these results in this subsection we set N = 1 and φ = 0. We use numerical quadrature
to calculate the integrals, providing a more stringent benchmark on which to validate
the conjugate gradient algorithm.

Calculations of Majda & Kramer (1999) yielded an explicit infinite integral
reprentation for the special case of a shear layer with a fluctuating transverse mean
wind. The temporal boundary conditions were enforced through use of Duhamel’s
principle. Following this approach in the present geometry (essentially identical to
Majda & Kramers’ calculation, differing only to handle the rotated geometry con-
sidered here) yields the following infinite integral formula for the enhanced diffusion
coefficient:

κ1,1 =
2π2Pe2

τP

∫ ∞
0

∫ τP

0

e−8π2u cos

{
2πPe[Vy − Vx]u

+τP Pe(δx − δy)
[
cos

(
2π

τP
τ

)
− cos

(
2π

τP
[τ− u]

)]}
dτ du. (5.1)

Majda & Kramer (1999) utilized a similar representation to deduce the large Pe
asymptotics at fixed τP (see discussion below). At fixed Pe, this integral requires
numerical tabulation. We use two different approaches to obtain this benchmark.
First, we utilize a two-dimensional Simpson’s Rule created in Matlab. The infinite
integral can be computed on a finite domain by choosing an upper limit of integration.
The truncated tail may be easily controlled since the integrand is a bounded function
multiplying a decaying exponential. We subsequently reduce the step size to resolve
the oscillations arising from the cosine piece of the integrand. Second, this output is
compared to that obtained through use of the NIntegrate function in Mathematica.

P. R. Kramer (private research notes) and Majda & Kramer (1999) also calculate
the high Péclet number asymptotics for the integral in (5.1). They show that the
enhanced diffusion term, κ1,1, scales like Pe2M/(M+1) where M is the order of the
largest order zero of the time-dependent component of the velocity. For our velocity,
we have simple zeros, and therefore M = 1, giving a Pe1 scaling for high Péclet
numbers.

P. R. Kramer also derived an alternative integral representation for the same
problem (private research notes). The first integral, given in (5.1), has an infinite
limit of integration and, for high Pe values, can become extremely oscillatory. The
alternative integral representation for the enhanced diffusion coefficient is a triple, as
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Figure 2. Benchmark of the conjugate gradient numerical technique compared with the numerical
integration of (5.1). Both curves have the parameters Vx = Vy = 0 with δx = 0.1 and δy = −0.05.
Also shown for reference are slope 1 and slope 2 lines.

opposed to double integral, over a finite domain, given by

κ1,1 =
16π4Pe2

τP

∫ τP

0


∫ τP

0

µ(1, τ) dτ

µ(1, t)(µ(1, τP )− 1)
+

∫ t

0

µ(1, τ) dτ

µ(1, t)



×


∫ τP

0

µ(−1, τ) dτ

µ(−1, t)(µ(−1, τP )− 1)
+

∫ t

0

µ(−1, τ) dτ

µ(−1, t)

 dt (5.2)

where µ(k, t) is an integrating factor for an ordinary differential equation in Fourier
space, given by

µ(k, t) = exp

(
8π2k2t− 2πik Pe

[∫ t

0

(δx − δy) sin

(
2π

τP
s

)
ds+ (Vx − Vy)t

])
.

This integral also must be tabulated numerically. This was accomplished using the
NIntegrate function in Mathematica. Note that while this integral has finite limits
of integration, it can still suffer from highly oscillatory behaviour for large enough
Péclet numbers. In practice, the numerical quadrature of the integral (5.2) has fewer
problems associated with oscillations than that in (5.1). The results from the numerical
integration of (5.2) have been compared with the numerical quadratures for (5.1) and
the results are indistinguishable.

Using these numerical quadratures, we turn now to the benchmarking of the
conjugate gradient algorithm. For this benchmarking procedure, we study the situation
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with τP > 1. We first discuss the asymptotic regimes. At low Péclet number, the
enhanced diffusion coefficients admit generically quadratic Péclet number scaling.
Majda & Kramer have shown that at high Péclet number, the asymptotic scaling
is linear in the Péclet number. As a benchmark, we demonstrate that the crossover
connecting the low Péclet number asymptotics with the high Péclet number asymptotic
scaling is precisely captured by the conjugate gradient algorithm. For the case when
τP = 1 this is shown in figure 2. This simulation is run in the absence of a mean
wind, and with δx = 0.1 and δy = −0.05. Also notice that the scaling behaviour

is accurate. That is, for small Pe, the scaling of the enhanced diffusion is like Pe2,
which holds for all situations. Also, for large Pe, the scaling behaves like Pe1, which
fits the asymptotic results shown in Majda & Kramer (1999). We comment that for
larger values of τP , the enhanced diffusion coefficients show only a small change from
the case with τP = 1. Below, we demonstrate that the opposite limit, τP → 0, leads
to dramatically different behaviour at high Péclet numbers (of the same order as
presented in figure 2). The general limits for general topology will be addressed in
the following section.

6. Results
We now turn to exploring new behaviour in the enhanced diffusion coefficients for

the shear geometry, and then for cases with more complex topology, first with unsteady
winds in two spatial dimensions, and then for the spatially three-dimensional ABC
flow, with large-scale wind. We begin by presenting the various limiting analytical
asymptotic calculations holding for general topology.

6.1. Asymptotically small τP regime (large Strouhal number)

We begin by examining the case where τP is small. First, the limit τP → 0 may be
formally deduced easily using a multi-scale expansion for the general flow geometry
studied here in (4.1). We relegate these calculations to the Appendix. The results
demonstrate that for fixed Péclet number, the limit of vanishing time period should
agree exactly with that of the steady cell problem, with the unsteady fluid flow being
replaced by its temporal average. For the benchmark case, this should not be a
surprise since, when looking at (5.1), letting τP approach zero has the same effect
as letting δx = δy = 0. We see this result in figure 3 where we have results for the
benchmark case where δx−δy = 0.2 for the three different values of τP = 1, 0.01, 0.001.
Now, the steady-state solution for similar parameter values has slope 2 on a log-log
plot of the Péclet number against the enhanced diffusion coefficient. We see that as
τP decreases in value, the closer the curve approaches the slope 2 curve at high Péclet
numbers. In terms of the Strouhal number, S , for a fixed Péclet number, letting τP
approach zero is identical to letting S = 1/(Pe τP ) approach infinity. For the geometry
studied here, the behaviour in the limiting cases with S →∞, or (as discussed below)
S → 0, is contrary to comments made by Avellaneda & Vergassola (1995) who remark
that the steady-state behaviour is reproduced as S approaches zero. We study the
limit of vanishing Strouhal number in the following subsection where we establish
that in fact the enhanced diffusion coefficients for small Strouhal number are given
by a particular average over the steady geometry. Observing that S = 1/(Pe τp), we
remark that for fixed Péclet number, the steady geometry is obtained in the limit
of infinite Strouhal number, and below we document that the limit of vanishing
Strouhal number is quite subtle, and may be generally quite different than the steady
geometry.
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Figure 3. The effect of decreasing τP , the enhanced diffusion coefficients approach those of the
steady-state case as seen in the benchmark case with δx − δy = 0.2.

Notice one other interesting feature shown in figure 3: in the case where τP = 0.01,
we observe a decrease in the enhanced diffusion coefficient as the Péclet number is
increased from 102.8 to 103, indicative of non-monotonic dependence upon the Péclet
number. This reduction in enhanced diffusion has been verified by increasing the
resolution of the numerical integration scheme and by using more Fourier modes
in the conjugate gradient scheme. In fact, when the conjugate gradient scheme
showed convergence using Fourier modes n, m, l = −5, . . . , 5, we checked for artificial
convergence by working with modes from −100, . . . , 100 in all directions. This increase
in resolution produced no change in the behaviour. Another interesting result is that if
we calculate the curve for τP = 0.001 for high enough Péclet numbers, near Pe = 104,
a similar region of decreasing enhanced diffusion as a function of increasing Péclet
number is observed. By examining the same set of flow parameters for many different
values of τP , we observe for 500 6 Pe 6 1000, that by decreasing τP , the dependence
of the enhanced diffusion coefficients upon the Péclet number changes dramatically:
for moderate values of τP , the closure coefficients exhibit entirely monotonic Péclet
number dependence, whereas for smaller τP , the enhanced diffusions demonstrate
non-monotonicity in the Péclet number. This is documented in the surface plot in
figure 4. Once again, we study the benchmark integral (5.2) with δx − δy = 0.2. We
use values of Pe as described above and values of τP ranging from 0.01 to 0.2.
We have also observed this non-monotonic behaviour with non-shear flows (ε 6= 1),
once again with small τP . We comment that non-monotonic enhanced diffusion
coefficients as a flow parameter is varied have been observed previously in the context
of fluctuating random shear layers (and attributed to resonances) (Castiglione et al.
1998). However, here, this behaviour is observed as a function of the Péclet number,
and some discussion is merited regarding how this observation is not in contradiction



Sensitive enhanced diffusivities 361

3.8

0

0.05

0.10

0.15

0.20

1000

Pe

lo
g 10

 (
j 1,

 1
)

sP

5.0

4.6

4.2

3.4
900

800

700

600

500

Figure 4. Surface plot of the integral (5.2) with δx − δy = 0.2 for 500 6 Pe 6 1000 and
0.01 6 τP 6 0.2. Notice that as τP decreases, the enhanced diffusion coefficient becomes
non-monotonic as a function of the Péclet number.

with the Stieltjes measure known to exist as a function of the Péclet number for fixed
Strouhal number (Avellaneda & Vergassola 1995).

Avellaneda & Vergassola have shown that with the alternative non-dimensionaliz-
ation discussed in § 2 (with Péclet and Strouhal numbers forming the independent
non-dimensional parameters), the enhanced diffusion coefficients may be represented
through a Stieltjes measure formula as a function of the Péclet number. The immediate
ramification of this observation is that the enhanced diffusion coefficients must show
monotonic dependence upon the Péclet number. We emphasize that in this case,
the Stieltjes measure formula says nothing about the Strouhal number dependence.
For the non-monotonic dependence just documented, we study the behaviour with
the non-dimensional parameters (Pe, τP ). In the light of the relation, S = 1/(Pe τP ),
we explore the effects of Strouhal numbers, S = S(Pe). In the following subsection
we explore a variety of Péclet-number-dependent Strouhal regimes which show the
complexity of the joint limit Pe→∞, S → 0. However, here, to demonstrate that our
study properly reflects the Stieltjes measure formula, we re-draw the equivalent of
figure 4, but as a function of (Pe, S ). In figure 5, we calculate the enhanced diffusion
coefficient through solutions to (5.2) with δx−δy = 0.2 and 500 6 Pe 6 1000. Instead
of changing values of τP , we now let S vary from 0.01 to 0.1. Observe that, along
lines of constant S , the enhanced diffusion coefficient is monotonically increasing as
a function of increasing Péclet number. However, notice that as Pe is held constant,
we do not observe any monotonicity in terms of the Strouhal number. These subtle
differences truly reflect differences in how the physical parameters are to be varied.
Of course, these subtleties here are emerging at finite but large Péclet number, with
small time period, τP = τP (Pe)� 1, in a regime where the incommensurate limits of
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Figure 5. Surface plot of the integral (5.2) with δx − δy = 0.2 for values 500 6 Pe 6 1000 and
0.01 6 S 6 0.1. Notice that for constant S , the enhanced diffusion coefficient is monotonic in the
Péclet number.

vanishing periodic Péclet number and infinite Péclet number are in proper balance.
We remark that for cases involving non-sheared flows, with fixed τP > 1, we always
observe enhanced diffusions which are monotonic in the Péclet number, while similar
non-monotonic scalings are observed for non-sheared topologies for cases with fixed
τp � 1.

6.2. Asymptotically small Strouhal number regime (large τp)

We next turn to considering the case of vanishing Strouhal number. To this end,
it is most convenient to work with the non-dimensional group (Pe, S). In this non-
dimensionalization, the temporally varying cell problem reads

S Pe
∂Θj

∂t
+ Pe(V + v(x, t)) · ∇Θj − ∆Θj = −Pe vj(x, t) (6.1)

where the temporal period is unity. In the present paper, we consider velocity fields
of the form

v(x, t) = v(x) + A(t)

for a temporally varying mean wind, A(t). The first thing to note is that the effect
of the temporal variation in the driver above plays no role in the enhanced diffusion
coefficients. This follows by observing the following separation of variables: Let
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Θj(x, t) = θ̄j(x, t) +M(t). Then M(t) and θ̄j(x, t) satisfy

S Pe
∂θ̄j

∂t
+ Pe(V + v(x, t)) · ∇θ̄j − ∆θ̄j = −Pe vj(x),

S Pe
∂M

∂t
= −PeAj(t).

So, M(t) may be easily computed, but makes no contribution to the enhanced
diffusivities as its spatial gradient vanishes identically.

Subsequently, the limit of vanishing Strouhal number is given by simply neglecting
the time derivative in the equation for θ̄j:

Pe(V + A(t) + v(x)) · ∇θ̄j − ∆θ̄j = −Pe vj(x). (6.2)

It should be stressed that this is not a singular limit due to the fact that this is a
periodic boundary value problem, and not an evolution equation. Said differently,
time and space are playing similar roles, and as such the highest-order derivative
in this regard is the Laplacian. While somewhat formal at this stage, we remark
that work in progress validates this approximation to be rigorously justifiable in the
context of the periodic shear layer (Bonn et al. 2001).

It should be especially noted that in (6.2) the role of time is simply as a frozen
coefficient in the equation. Therefore, the temporally varying portion of the wind, A(t),
can be considered to be part of the constant mean, V. We can then solve (6.2) as if it
were a steady-state problem. Thus, we see that the enhanced diffusion coefficients are
simply averages over the steady geometry by observing that the enhanced diffusions
are spatio-temporal averages of gradients of θ̄j:

κi,j =

∫ 1

0

(∫
[0,1]d
∇θ̄i(x; t) · ∇θ̄j(x; t) dx

)
dt. (6.3)

Noting that the expression in brackets is in fact the enhanced diffusion arising from
the steady theory, with frozen time coefficient, we recognize that in the limit of
vanishing Strouhal number, the enhanced diffusivities are given by an explicit average
over the steady geometry.

Now it is worth commenting on the truly singular limit of large Péclet number,
and its behaviour as the Strouhal number is varied. It is in this limit in purely steady
flow that the enhanced diffusion coefficients were observed to admit a discontinuity
supported upon a dense set of mean flow directions (Koch et al. 1989; Majda &
McLaughlin 1993; Fannjiang & Papanicolaou 1994). We observe that for Péclet-
number-dependent Strouhal numbers, we may expect, due to the singular nature of
the large Péclet number limit, to observe quite complicated behaviour to exist as
a function of both Péclet and Strouhal numbers, at finite, but large values of the
Péclet number. To this end, we consider Péclet-number-dependent Strouhal numbers,
S = QPe−(1+γ) for large values of the Péclet number. First, given the previous
discussion, observe that as long as the product (S Pe) vanishes in the limit of large
Péclet number, we may expect that the time derivative has no effect, and may be
similarly discarded as was done with fixed Péclet number. This will occur precisely
when γ > 0. It should be stressed that this quite formal observation really should be
supplemented by rigorous analysis. In work in progress, we are assessing the validity
of this approximation for large Péclet number in the context of the time-varying shear
layer (Bonn et al. 2001).
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Figure 6. Enhanced diffusion coefficient in log-log coordinates for the time-varying shear profile
with Péclet-number-dependent Strouhal number for γ = −0.5,−0.6 and −0.75. Notice that as γ
decreases towards −1, the results deviate further from the average over the steady geometry. Here,
δx − δy = 0.2.

We remark that numerical simulation presented in the following subsection docu-
ments numerically that this frozen time approximation is excellent for flows of general
topology for γ > 0. It is somewhat remarkable, and not clear from inspection of the
cell problem that this approximation works well even for γ = 0. However, for values of
γ < 0, we next document that this approximation fails. Figure 6 shows the enhanced
diffusion coefficient plotted in log-log coordinates as a function of the Péclet number
for differing values of γ for the case of a sheared geometry, with flow parameters
δx − δy = 0.2, ε = 1. Also included in this figure is the average over steady geometry
given above in (6.3). Observe that the agreement between the steady average and the
complete solution deteriorates as γ < 0 is decreased. This deterioration first appears
as mild oscillation in the enhanced diffusion coefficient as a function of Péclet num-
ber for γ = −0.5. The amplitude of this oscillation grows as γ is further decreased,
until ultimately, the oscillation vanishes (presumably being observed at larger Péclet
numbers), saturating to the steady theory in this range of Péclet numbers as predicted
by the asymptotic limit of infinite Strouhal number.

Figure 7 is a schematic phase diagram which summarizes these results. In the S vs.
1/Pe plane, we are mainly concerned with what happens near the singular point (the
origin). The formal arguments in § 6.1 and § 6.2 suggest that the asymptotic behaviour
of the enhanced diffusions depends upon the path of approach to the origin. The
boundary separating fully unsteady phenomena from routine averaging of steady
coefficients is the curve S = 1/Pe, shown in figure 7. Additionally, figure 7 depicts
the behaviour at large Strouhal and finite Péclet numbers: fluctuation produces no
modifications to the steady theory. We have cut out a neighbourhood of the origin to
indicate that the precise asymptotic boundaries near this point are yet to be determined
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Figure 7. Schematic phase diagram of the S vs. 1/Pe plane. Near the origin, we expect the enhanced
diffusion coefficients to be given as a routine average over the steady geometries when S 6 1/Pe,
while, for S > 1/Pe, fully unsteady theory prevails. When S approaches ∞, formal theory predicts
fluctuations to not modify the steady theory.

generally. A more complete and rigorous description of the Péclet–Strouhal-number
plane (including the origin) is being developed in current work (Bonn et al. 2001).

6.3. Numerical results for non-sheared two-dimensional time-dependent flow

We next turn to the study of how the sensitive Péclet number scaling, documented in
the steady geometry (Majda & McLaughlin 1993) is modified through the incorpor-
ation of a temporally fluctuating large-scale mean wind for Strouhal number regimes
in which temporal fluctuation may be expected to provide some averaging over the
steady theory. Specifically, we focus upon the case, S = Q/Pe, (γ = 0), which is
equivalent to fixing τP . This scaling is critical in separating behaviour given by a
straight average over steady theory, and that arising from fully unsteady theory.
As we argued in the previous section, this particular scaling is not governed by
any obvious average over the steady geometry, whereas a straight average over the
steady geometry will work for values of γ > 0. To explore γ = 0, we utilize our
benchmarked conjugate gradient algorithm. We will document below that this case
is indeed transitional: for Q 6 1, the agreement between the fully unsteady theory
agrees extremely well with the average over the steady geometry; however, for larger
values of Q, the steady averaging fails, requiring fully unsteady theory.

We discussed the steady-state results earlier and they are illustrated in figure 1.
Our purpose here will be to explore first how weak temporal fluctuation modifies
the steady sensitive Péclet number scaling. This will be studied through consideration
of how the addition of a small-amplitude fluttering mean wind modifies the predic-
tions documented in figure 1. We will then turn to a discussion of larger-amplitude
fluctuations.

In the simulations to follow, we consider the velocity field outlined in § 4 and
§ 6.2 with V + A(t) + v(x). V is a steady large-scale wind, v(x) is the background
spatially varying flow field, and A(t) is the temporally fluctuating wind field. The flow
parameters are given in (4.1), and we use the notation V = (Vx, Vy)

t. We note that
many of the calculations presented below for a fixed set of flow parameters, varying
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Figure 8. Example of a case with the fluctuating wind aligned with the steady wind. Both steady
and δx = 0.35, δy = −0.35 cases are shown with Vy = 15 for all four curves.

only the Péclet number from 10−3 to 102.4 in steps of 0.1 in logarithmic coordinates,
consume 48 or more hours of wall clock time on the Dec Alpha 525 Mhz processor.

Unless stated otherwise, the results cited are with ε = 0.5. Similar numerical
simulations with ε = 0.1 were performed, yielding qualitatively similar behaviour to
that reported below. Also, the results cited are with φ = 0 and Q = 1. Calculations
with non-zero φ were performed, and significant differences were not observed, and
similarly for the situation where Q < 1. In fact, performing simulations with Q = 0.01
produced less than a 0.01% change in the resulting enhanced diffusion coefficient
with the parameters V = (−15, 15), N = 1, and δx = δy = 0.2. The enhanced diffusion
coefficients are calculated utilizing the conjugate gradient algorithm described above,
for various values of δx and δy both for Vx = −15 and Vx = −15.5, where Vy = 15. The
orientation of the temporally fluttering mean wind is adjusted through the parameter,
N. For cases where N = 1, the time-dependent component of the flow is always along
a vector in the constant direction θ where tan(θ) = δy/δx. We additionally examined
cases where N = 2, in which the frequency change gives a fluctuating wind field
which changes direction throughout the period of the flow, tan(θ) = 2δy cos (2πt)/δx.
Simulations were further performed with N = 3 though no new behaviour was
identified compared to the similar N = 2 case. The numerical runs break down into
three cases:

Case 1: N = 1, δx = −δy . When δx = −δy , and N = 1, the direction of the
time-dependent component of the flow is constant and parallel to the mean wind,
(−15, 15)t. There is little noticeable change in the behaviour of the enhanced diffusion
coefficient. This should not be suprising since the time-dependent perturbation only
affects the strength of the spatial mean of the flow at different times of the period,
and not the direction. We illustrate this in figure 8 where we show the splitting
achieved by the two runs Vx = −15 and Vx = −15.5 where in each run, δx = 0.35
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Figure 9. Two cases involving small-amplitude fluctuating wind perpendicular to the steady wind.
The main cases break into: steady (the plain lines), δx = δy = 0.1 and δx = δy = 0.2, and all runs
are done with Vy = 15. Notice that as we increase the magnitude of the perturbation, the splitting
is less drastic.

and δy = −0.35. Notice that not only does the splitting persist, but these two runs are
actually superimposed on the steady runs with the same conditions and no change is
noticeable.

Case 2: N = 1, δx = δy . In this case, the direction of the time-dependent per-
turbation is constant and perpendicular to the steady-state mean flow of (−15, 15)t.
In this case, we see more varied behaviour. As we increase the size of the pertur-
bation from δx = δy = 0 , we see that, while there still is a splitting between the
(Vx, Vy)

t = (−15, 15)t and (Vx, Vy)
t = (−15.5, 15)t runs, the splitting is less dramatic as

the amplitude of the perturbation increases. In fact, the splitting seems to ‘zip up’ as
the amplitude increases. This is demonstrated in figure 9 where we show the steady
cases, with δx = δy = 0.1 and δx = δy = 0.2.

We next briefly observe that the simpler tabulation of approximate enhanced
diffusion emerging from the average over the steady geometry, given in (6.3), agrees in
this case extremely well with the dynamic simulations. This is documented in figure 10.
Here, we are interested in comparing the enhanced diffusions documented in figure 9
with those given by steady averaging with a frozen time coefficient. Additionally, we
redraw the output from the unsteady calculations for the case with δx = δy = 0.1.
Observe the striking agreement. However, we see next that with larger values of
the constant Q, this agreement deteriorates as we effectively move into a different
Strouhal number regime. This is documented in figure 11 where we compare the
averaged enhanced diffusion coefficients arising from steady theory with those of the
unsteady theory with Q = 1 and Q = 20. In all cases shown here, Vx = −15. For
Q = 1, the agreement between steady averaging and the fully unsteady theory is
excellent. However, the agreement is lost as Q is increased. Observe the difference
between the averaged theory and the fully unsteady coefficients shown here with
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Figure 10. Comparison of enhanced diffusion coefficients given by averaging over steady geometries
with fully unsteady calculations. For all simulations, Vy = 15, δx = δy = 0.1, and Q = 1. The outer
curves (shown for reference) are the output of the purely steady (unaveraged) theory. Note that
there is no visible difference between the averaged steady theory and the full simulation.

Q = 20. Consequently, the case with γ = 0 is indeed transitional. For negative values
of γ, averages over the steady geometry will fail to be relevant, as seen below.

In the light of this delicacy regarding the success of steady averaging, we proceed
henceforth utilizing the complete inversion of the unsteady cell problem. However, it
is worth noting that for all cases we have studied, with Q 6 1 and γ > 0, the frozen
time approximation outlined in the previous subsection works exceptionally well.

Returning to the behaviour of the enhanced diffusion coefficients emerging from
the complete inversion of the unsteady cell problem, we consider further increasing
the amplitude of the fluctuating wind. For large-amplitude fluctuations (on the order
of ∆V , the difference of the winds that exhibit large splittings, here (0.5, 0)), the
presence of time fluctuations must somehow average the sensitive scaling existing
in the steady geometry. This may be loosely explained simply because the distinct
scaling identities, set by steady perturbation of the steady geometry, become in
some sense ‘statistically’ identical in the presence of an additional, large-amplitude
fluttering mean wind. Said differently, the distinct cases in the steady geometry with
V = (−15, 15), and V = (−15.5, 15) produced dramatically different scalar mixing,
are certainly less distinguishable when a large-amplitude temporally fluctuating mean
wind is added, and should be expected to select, from the possible scalings arising for
steady flow, some ‘averaged’ behaviour as a function of the Péclet number. Of course
deducing what this averaged Péclet number dependence is, and if this averaging may
be universal is both interesting and quite difficult. Recall, that Majda & Kramer
(1999) have documented that the large Péclet number asymptotics for the shear layer
with time-varying tranverse wind are set by the amount of time (the order of the
zero of the temporally fluctuating transverse mean wind) this varying wind spends
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Figure 11. The results of the conjugate gradient calculation with Q = 1 and Q = 20 compared
to the case of averaging over the steady geometry. For all simulations, (Vx, Vy) = (−15, 15) and
δx = δy = 0.1. Notice that as Q increases, the steady averaging fails.

in the vicinity of zero. This subtlety reflects the fact that in the shear geometry, it
is the presence or absence of a steady tranverse wind which gives rise to dramatic
change in the Péclet number scaling (Majda & McLaughlin 1993). In other words, in
this flow geometry, there is a single value of the large-scale flow which dramatically
modifies the transport properties. Observe that for flows with more general topology,
the situation is much more complicated. The change in scaling is supported upon a
dense set of flow directions (Koch et al. 1989; Majda & McLaughlin 1993; Fannjiang
& Papanicolaou 1994). Clearly, the analogous study for more general topologies is
not at present tractable. Nonetheless, we may begin to understand this temporal
averaging through the study of temporal fluctuation involving only single Fourier
modes.

As the size of the perturbation (δ) is increased, the sensitive Péclet number scaling
is effectively smoothed by the temporal fluctuation. This is documented in figure 12,
where δx = δy = 0.65. In this figure, we see that the splitting exhibited previously
has been erased by the temporally varying component of the velocity. The enhanced
diffusivities in the two cases are nearly parallel and close in value for sufficiently
large Péclet numbers. Also notice that the slope of both curves in the log-log plot is
nearly 1, indicating approximately linear scaling in the Péclet number. We stress that
the degree of this smoothing strongly depends upon the particular Strouhal number
regime: for γ < 0, this Pe1 scaling is lost. In figure 13, we document several different
values of γ: for γ < 0, the Pe1 scaling is not observed. For such negative values of
γ, the fully unsteady behaviour of the problem exhibits itself, even for large-scale
fluctuations, as illustrated in figure 7. Recall that the formal theory presented in § 6.1
and § 6.2 suggests that routine averaging will work provided γ > 0.
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Figure 12. Further increased amplitude of fluctuating wind with δx = δy = 0.65. The splitting has
been ‘zipped up’, in place of the averaged approximately linear (slope one line shown for reference)
scaling behaviour. All simulations are with Vy = 15.

Case 3: N = 2, δx = ±δy . When N = 2, the orientation of the fluctuating wind
varies in time as tan(θ) = ±2 cos (2πt). This change in direction affects the enhanced
diffusion coefficient. Specifically, the degree of splitting between the enhanced diffusion
coefficients corresponding to the different steady winds is reduced compared to case
1, but not as strongly as case 2. These observations are demonstrated in figure 14,
where N = 2, with δx = 0.35 and δy = −0.35. Additionally depicted in figure 14 is the
identical output corresponding to δx = δy = 0.35, and N = 2 (analogous to the cases
with N = 1 documented in case 2). It should be noted that in further simulations,
it has been seen that increasing the strength of the temporal fluctuation does not
guarantee a reduction in the size of the relative splitting (Bonn 2001). This further
emphasizes that while temporal fluctuation does aid in controlling the sensitive scaling
occurring in the steady case, the precise details of this averaging are quite subtle and
complicated, especially at fixed, finite Péclet number.

6.4. Numerical results for three-dimensional steady flow

We conclude with the calculation of the enhanced diffusion coefficients for a steady,
but fully three-dimensional velocity field. Here we consider a background three-
dimensional ABC flow, with the addition of a steady mean wind. Specifically, we
consider an ABC velocity field given by

v(x, y, z) =

 A sin (z) + C cos (y) + Vx
B sin (x) + A cos (z) + Vy
C sin (y) + B cos (x) + Vz

 .

The purpose of this study is to document sensitive Péclet number scaling in the
enhanced diffusion coefficients as the large-scale mean wind is varied. This sensitivity



Sensitive enhanced diffusivities 371

2

1

0

–1

0 0.5 1.0 1.5 2.0 2.5
log10 (Pe)

lo
g 10

 (
j 1,

 1
)

Vx = –15.5, (dx, dy) = (0.65, 0.65), c = 0

c = 0.5

c = –0.5

c = –0.75

Figure 13. For γ > 0, slope 1 scaling exists for large enough fluctuations. (The curve for γ = 0 is
the same as on figure 12.) For γ < 0, this scaling breaks for large values of Péclet number.
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Figure 14. Enhanced diffusion for a case with an unsteady wind with dynamic orientation achieved
by setting N = 2 (compare with the case where the fluctuating and steady wind fields are aligned
parallel, figure 8 or perpendicular, figure 12).

is evidenced by a splitting in Péclet number scaling occurring at finite Péclet number.
Using a similar numerical methodology to that documented in § 4 (for numerical
details consult Bonn 2001), we ran two simulations: one where (Vx, Vy, Vz)

t = (5, 5, 5)t

and one where (Vx, Vy, Vz)
t = (5.2, 5.05, 5)t. In both simulations, A = B = C = 1.
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Figure 15. Two cases of the steady, three-dimensional, ABC flow. Both cases have A = B = C = 1.
Notice the splitting in the enhanced diffusion coefficient scaling.

The numerical discretization is performed through a truncated Fourier spectral rep-
resentation, and the same conjugate gradient iteration used in the latter sections is
employed (Bonn 2001). The results are shown in figure 15. Notice that even though
the x- and y-components of the wind are changed by only 4% and 1%, respectively,
there is a strong change in Péclet number dependence of the enhanced diffusion. For
the perturbed curve, there is an extended transition region where the slope in log-log
coordinates is approximately 0.9 for a large number of Péclet number values, from
about Pe = 101.2 to Pe = 102.2. And while the overall change is less dramatic than in
the two-dimensional geometry, nonetheless, the addition of a spatial dimension does
not remove the sensitivity of the enhanced diffusion coefficients to small perturbations
in large-scale coefficients, at least at finite Péclet number.

7. Conclusions
We have presented an asymptotic and numerical study addressing how the intro-

duction of temporal fluctuation modifies the complicated Péclet number scaling be-
haviour existing in homogenized eddy diffusion coefficients arising in two-dimensional
steady flow with large-scale mean winds. The study is successful in identifying various
Strouhal number regimes for which temporal fluctuation in the form of an additive
time-varying wind may modify and average the poorly behaved steady theory, and
Strouhal number regimes where temporal fluctuation leaves the steady theory either
unchanged, or further complicated.

For Strouhal number regimes where fluctuation improves the steady enhanced
diffusion coefficients (i.e. S = Pe−(1+γ), γ > 0), we utilized a conjugate gradient
algorithm to explore the temporally averaged behaviour. We documented that for
weak temporal fluctuations, the sensitivity in the enhanced diffusion coefficients is
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smoother to some degree; however, the degree of smoothing is strongly dependent
upon orientational details of the temporal fluctuation: for temporal fluctuations not
strongly aligned with directions orthogonal to the background mean wind, little
change in Péclet number dependence is noted, while fluctuations aligned strongly
orthogonal to the background wind offer eddy diffusivities less sensitive to variation
in large-scale flow properties. For large-amplitude fluctuations, strongly aligned with
directions orthogonal to the background mean field, we observe that the sensitivity
in the Péclet number scalings arising in steady theory is replaced by an effectively
averaged enhanced diffusivity, scaling approximately as Pe1. The present numerical
study, while restricted to fluctuations involving only single Fourier modes, additionally
documents that even if a universal asymptotic scaling law were possible in this
Strouhal number regime, the mixing properties as a function of large-scale flow
parameters at finite Péclet number are doubtless quite complex.

Perhaps more sophisticated mathematical theory can eventually be developed to
address the quantitative and qualitative mixing properties of a passive scalar. Ulti-
mately, methods need to be developed which can offer insight into the more difficult
problems of understanding mixing properties in more realistic situations involving
the incompressible Navier–Stokes equations, or even more complex issues associated
with stratified mixing. Certainly, the present study illustrates just how difficult such
an undertaking this may be.
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Appendix. Perturbation calculation for τP � 1

To see the behaviour of the enhanced diffusion coefficient for τP � 1, we start with
the cell problem, (3.5). Putting the velocity field into the cell problem, we have

∂Θj

∂t
− ∆Θj + Pe(v(x) + A(t) + V ) · ∇Θj = −Pe(vj(x) + Aj(t)).

We start with v(x) being periodic with period one and A(t) periodic with period
τP . We rescale the time variable and let τ = t/τP . Substituting, we get the rescaled
equation

∂Θj

∂τ
− τP∆Θj + τP Pe(v(x) + A(τ) + V ) · ∇Θj = −τP Pe(vj(x) + Aj(τ)). (A 1)

In this rescaled cell problem, A(τ) is periodic with period one. Therefore, the solution
to (A 1) is periodic in space and time with period one. Assuming that τP � 1, we
expand the solution to (A 1) as a series in terms of the small parameter,

Θj(x, t) = Θ0
j (x, t) + τPΘ

1
j (x, t) + τ2

PΘ
2
j (x, t) + · · · . (A 2)

Substituting (A 2) into (A 1) and collecting terms of like powers of τP , the τ0
P and τ1

P
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equations, respectively, are

∂Θ0
j

∂τ
= 0, (A 3)

∂Θ1
j

∂τ
= ∆Θ0

j − Pe(v(x) + A(τ) + V ) · ∇Θ0
j − Pe(vj(x) + Aj(τ)). (A 4)

The leading-order term of the solution, Θ0
j depends only on x and is independent

of τ. Also, the solution is periodic with period one and has zero mean.
We apply the Fredholm Alternative Theorem to determine existence of a solution

to (A 4). Therefore, the right-hand side of (A 4) must be orthogonal to the null space
of the adjoint of the operator on the left-hand side of the equation. The null space
is spanned by functions f(x) which have zero mean and are periodic in space with
period one. A natural inner product to use is (f, g) = 〈f · g〉 with 〈·〉 as defined in
(3.1). Therefore, we need, for all mean-zero, unit periodic functions f(x),

0 = (∆Θ0
j − Pe(v(x) + A(τ) + V ) · ∇Θ0

j − Pe(vj(x) + Aj(τ)), f(x))

= (∆Θ0
j − Pe(v(x) + V ) · ∇Θ0

j − Pe vj(x), f(x))− Pe(A(τ) · ∇Θ0
j + Aj(τ), f(x))

= (∆Θ0
j − Pe(v(x) + V ) · ∇Θ0

j − Pe vj(x), f(x)) (A 5)

since

(A(τ) · ∇Θ0
j + Aj(τ), f(x)) =

∫ 1

0

∫ 1

0

∫ 1

0

(A(τ) · ∇Θ0
j + Aj(τ))f(x) dx dy dτ

=

∫ 1

0

∫ 1

0

f(x)

[
∇Θ0

j ·
(∫ 1

0

A(τ) dτ

)

+

∫ 1

0

Aj(τ) dτ

]
dx dy = 0

since A(τ) has zero mean.
Equation (A 5) gives a condition on Θ0

j for the solvability of Θ1
j . Since Θ0

j has

zero mean and is periodic with period one, ∆Θ0
j − Pe(v(x) + V ) · ∇Θ0

j − Pe vj(x) is
also mean zero with period one. Thus, for the inner product (A 5) to be zero for all
appropriate choices of f(x), it is necessary that

∆Θ0
j − Pe(v(x) + V ) · ∇Θ0

j − Pe vj(x) = 0

which is precisely the equation of the steady-state cell problem.
Therefore, the leading-order term of the perturbation expansion is the solution to

the steady-state cell problem.
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